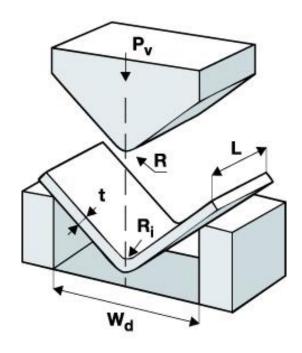


S32 - LES PROCEDES DE CONFORMATION

S32-1 TECHNIQUE DE DEFORMATION PLASTIQUE



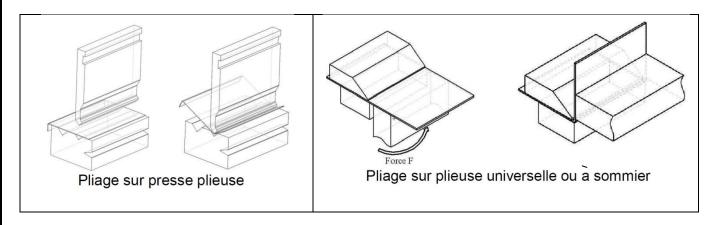
Retrouver ce cours sur https://christophe-tomczak.canoprof.fr / Livre numérique / BAC PRO

LE PLIAGE

Calculs des Longueurs développées

OBJECTIF DE LA SEANCE:

Déterminer la LD par les différentes manières


Choisir les différentes machines possible pour le pliage des tôles

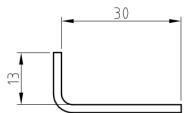
Bon pour diffusion			Année	20 / 20
Nom:	CHAUDRONNERIE INDUSTRIELLE	Date :		
	Rédacteur C. TOMCZAK -	Distribué par :		

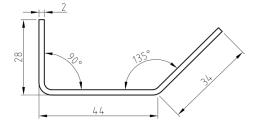
S32-1 - 1 : LE PLIAGE

Présentation

Les différentes machines pour la réalisation de pièces pliées sont :

1. Les méthodes de calculs de Longueur développées


A. La méthode par le calcul des cotes intérieures


Cette méthode n'est valable uniquement que lorsque :

Vé = 8 x ép. et seulement pour les plis à 90 °

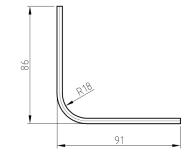
LD_{int} = Σ cotes intérieures

Pour un pli de rayon intérieur minimum (sensiblement égal à l'épaisseur), il faut rechercher la longueur développée par la méthode des **COTES INTERIEURES**, puis les additionner. Exemple : LD₁ = _

B. <u>La méthode par le calcul de la perte au pli (également appelée « Delta L » ou « ΔL »)</u>

Pour cela, il faut trouver, dans le tableau, une valeur en fonction de l'outillage et de l'angle et qui sera à prendre en compte dans le calcul de la LD.

TABLEAU DES DELTA L : Oter ou ajouter la valeur du delta L en								
Еp	Vé	Ri	165°	150°	135	120°	105°	90°
	10	1,6	-0.4	-0.8	-1.3	-1.9	-2.7	-3.7
	12	2	-0.4	-0.8	-1.2	-1.8	-2.7	-3.8
2	16	2,5	-0.3	-0.7	-1.2	-1.9	-2.7	-4
	20	3	-0.3	-0.7	-1.2	-1.9	-2.8	-4.2
	25	4	-0.3	-0.7	-1.2	-1.9	-2.9	-4.5


$LD_{ext} = \Sigma$ cotes extérieures + Σ pertes aux plis

Exemple :			

C. La méthode par le calcul de la fibre neutre.

Pour cela, nous allons considérer qu'une fibre neutre est présente dans la tôle et que sa longueur ne varie pas après pliage (idem opération de Roulage). Il faut décomposer chaque tronçon.

Exemple : _____

Nom:	CHAUDRONNERIE INDUSTR	Date:	
	C. TOMCZAK	Année Scolaire 20 / 20	